Polaris
Future Aircraft Design Concept
Team
Tobias Dietl
Jonas Karger
Katrin Kaupe
Andreas Pfemeter
Philipp Weber
Alexander Zakrzewski
Academic Support and Advisors
Institute of Aircraft Design, University of Stuttgart
Prof. Dr. Andreas Strohmayer
Ingmar Geiß
Contact: polarisaircraftdesign@gmail.com
Submitted on July 1st 2018
Abstract
Looking at aviation in 2045 a competitive operation of aircraft will not only be dependent on highly efficient
aircraft, but also on passenger comfort, manufacturing effort and an excellent life cycle.
The present report provides a breakdown of an aircraft design study with consideration of future aviation
goals and proposals that might further improve the design with regard to pollutant and noise emissions.
An adjusted design process is used to find the synergies of all components and to combine their advantages
instead of evaluating each component itself. Correlating with the design process, the final aircraft design is
discussed with its results, options and challenges. To validate the quality of the results, the reference aircraft
CSR-01 (A320) is emulated in relation to energy consumption, mass estimation and aerodynamics with a devi-
ation of less than 1 %.
With special remark to the used key technologies the report provides information about current technical
states, future improvements and an estimation of their qualitative efficiency in 2045. Except for high tem-
perature superconducting (HTS) material all other used technologies are at least tested on a demonstrator or
available for series production by now. HTS materials currently attain technology readiness level 4 and therefore
illustrate that the used key technologies of this aircraft design are about to be available before 2025.
Finally, the improvements of this design are based on the synergistic integration of each component, resulting
in a single-aisle transport aircraft that reduces the energy consumption for an equal mission by 61.39 % in ref-
erence to an A320 in 2005. A multi-functional fuselage concept combined with a calculated liquid hydrogen fuel
system and a turboelectric power transmission complete the aircraft design reducing the energy consumption,
manufacturing effort and increasing the reliability and passenger safety.
I
Contents
Nomenclature
List of Figures
List of Tables
1 Introduction
2 Design Decisions
3 Key Technologies
2.1 Design Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.1 Propulsion Chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.2 Multi-functional fuselage concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.3 Aerodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4 Design Overview
11
4.1 Fuselage and Wing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.2 Gear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.3 Empennage and Propulsion System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.4 Fuel System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.5 Mass Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.6 Technology Readiness Levels
5 Aircraft Performance
18
5.1 Compared key data of Polaris and CSR-01 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6 Impact on Operation
22
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
6.1 Pollutant Emissions
6.2 Alternative Missions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6.3 Flight related aspects
6.4 Airport Modifications
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6.5 Groundhandling and Turnaround . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
7 Summary
Bibliography
A Gondola fuselage concept
III
V
V
1
2
2
4
4
6
8
25
26
I
Contents
II
Nomenclature
Nomenclature
Abbreviations
MAAMF
Mylar-aluminum/aluminum-Mylar foil
AC
BSCCO
CeRAS
CFD
CFRP
CG
CROR
DC
FAR
GD
HPC
HTP
HTS
IATA
ICAC
IRA
ISA
MAC
MTOM
MME
MZFM
OPR
OME
REVAP
SLI
SR
TET
TLAR
TSFC
TOFL
UHB
ULD
VARI
VeSCo
VTP
YBCO
Alternating current
bismuth strontium calcium copper oxide
Central Reference Aircraft data System
Computational Fluid Dynamics
carbon fibre reinforced plastics
Center of Gravity
Contra-rotating open rotor
Direct current
Federal Aviation Regulations
High- temperature superconductor
high pressure compressor
horizontal tail plane
High – Temperature superconductor
International Air Transport Association
Initial Cruise Altitude Capability
Intercooled Recuperated Aero engine
International Standard Atmosphere
Mean aerodynamic chord
Maximum Take-Off Mass
Manufacturers Mass Empty
Maximum Zero Fuel Mass
overall pressure ratio
Operating Empty Mass
Revolutionäre Arbeitsprozesse
single-line injection
Short Range
Turbine Entry Temperature
Top Level Aircraft Requirements
thrust specific fuel consumption
Take-Off Field Length
ultra-high bypass
Unit Load Device
Vacuum Assisted Resin Injection
Ventilated Shear Core
vertical tail plane
yttrium barium copper oxide
III
Symbols
Latin
Symbol
L/D
cD
cLmax
cLmax
˙m
v1
vs,T O
vs,LDG
cL−Empennage
cLmax,LDG
VV T P,M T OW
VV T P,OEW
Greek
Symbol
α
αempennage
γapproach
ηth
ηth,baseline
Nomenclature
Description
glide ratio
drag coefficient
maximum lift coefficient
lift coefficient, empennage
maximum lift coefficient
decision speed
mass flow
stall speed, take-off configuration
stall speed, landing configuration
maximum lift coefficient, landing configuration
Volume coefficient for the vertical tail in MTOW configuration
Volume coefficient for the vertical tail in OEW configuration
Description
angle of attack
angle of attack, empennage
approach angle
thermal efficiency
thermal efficiency baseline
Unit
–
–
–
–
–
–
–
–
kg/s
m/s
kts
kts
Unit
rad
rad
deg
–
–
IV
List of Figures
List of Figures
1
1.1 Operation evaluation of the A320 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2
2.1 Polaris . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.2 Design Process
3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.3 Different Hybrid Systems
4
2.4 Different Hybrid Systems
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4
3.1 Turboelectric propulsion chain of the Polaris concept . . . . . . . . . . . . . . . . . . . . . . . . .
5
3.2 Core efficiency of different engine concepts [11]
. . . . . . . . . . . . . . . . . . . . . . . . . . . .
6
3.3 Power densities of superconducting and conventional electric machines [17] . . . . . . . . . . . . .
7
3.4 VeSCo Concept [24]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7
3.5 Gondola Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8
3.6 L/D Polars of Polaris and the reference aircraft CeRAS . . . . . . . . . . . . . . . . . . . . . . .
8
cL − cD polars of Polaris and the reference aircraft CeRAS . . . . . . . . . . . . . . . . . . . . .
3.7
8
3.8
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Influence of wing on the empennage
3.9 Function of Coanda-Flap System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9
3.10 Transition Surface of the morphing Wing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.11 Static margin diagram of Polaris
4.1 Three side and isometric view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2
Integration of fuel system, cargo and propulsion unit . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.3 Fuselage Section and Cabin Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.4 Burstcone CROR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.5 Assembly of empennage, propulsion system and fuselage . . . . . . . . . . . . . . . . . . . . . . . 13
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.6
. . . . . . . . . . . . . . . . . . . . . . . 15
4.7 Flammability compared between LH2 and kerosene [44]
4.8 Calibration method of component weights based on [48]
. . . . . . . . . . . . . . . . . . . . . . . 15
4.9 Cross section of fuel delivery lines based on [43] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.2 Payload-range-diagram of the short-range and the long-range version of Polaris . . . . . . . . . . 20
6.1 Comparison of greenhouse effects depending on flight altitude [60].
. . . . . . . . . . . . . . . . . 22
6.2 Example on how to optimize the flight path for a smaller greenhouse effect [61]. . . . . . . . . . . 23
6.3 Ramp Layout of Polaris . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1500 NM design mission profile of Polaris
Insulation layers tanks [46]
List of Tables
1
1.1 Top Level Aircraft Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8
3.1 Non-lift-dependent component drag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.2
resulting α . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.1 Mass Breakdown of Polaris and CeRAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.2 Tank component weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.3 Technology readiness level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.1 Mission calculation data for the 1500 NM design mission of the Polaris concept
. . . . . . . . . . 19
5.2 Comparison between CeRAS and Polaris for two different mission ranges and the resulting energy
saving taking the two different fuel types into account
. . . . . . . . . . . . . . . . . . . . . . . . 20
5.3 Calculated take-off and landing data for Polaris at MTOM . . . . . . . . . . . . . . . . . . . . . 21
5.4 Compared key data of Polaris and CeRAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.1 Calculated data of alternative missions. Note that the fuel consumption at M a = 0.75 exceeds
the fuel capacity of the short-range version, so the long-range has to be used in this case.
. . . . 23
V
1 Introduction
1 Introduction
A look back at the last years shows that the number of flight movements rose each year to approximately 42
million in 2017 [1]. This number will rise further due to lower fares and increasing flight routes for the foreseeable
future. As a matter of fact, it is necessary to consider new aircraft configurations and propulsion systems as
well as the synergistic integration in the complete aircraft to reduce the energy consumption of transport air-
crafts drastically. Beyond that innovative operating concepts and air operations need to be considered as well [2].
This report focuses on the design of a new single-aisle transport aircraft, using an A320 as reference. The
Best-in-Class version of the A320 from the year 2005 is specified with a design range of 2750 NM at a design pay-
load of 13 608 kg. An own investigation of the A320s’ actual flight range shows that the largest number of flights
is below 1500 NM [3]. In the future new flight routes might be necessary to match customer expectations, but
it is a matter of fact that a mission sector of 1500 NM covers nearly all destinations in Europe, Asia and North
America. The investigation therefore considers 1100 flights on 19 airports in these continents, as these flights
will still be part of future aviation. Figure 1.1 shows the number of flights for its flight distance and the per-
centage of flights in total. A range of 1500 NM covers 85 % of the investigated flight and as there are only a few
flights above 2200 NM, the chosen design point of the present concept is set to 1500 NM at a payload of 13 608 kg.
For the validation of the present design concept,
the A320 is emulated for this design mission. The
RWTH Aachen provides a Central Reference Air-
craft data System (CeRAS) [4], in this the CSR-01,
a modeled A320, is used.
It fulfills the require-
ments of the task and provides all necessary data
from a single source. The advantage of using the
CSR-01 A320 model lies in having validated infor-
mation about an A320 regarding the propulsion
system, aerodynamics, mass breakdown and per-
formance. The final design concept is compared to
the model with the exception of a changed design
point. Table 1.1 shows the Top Level Aircraft Re-
quirements that are chosen for the design.
Figure 1.1: Operation evaluation of the A320
Table 1.1: Top Level Aircraft Requirements
CSR-01 Polaris
1500
ICAC
2750
Mission Range
[NM]
Alternative
[NM]
200
200
TOFL
[ft]
[m]
Payload
[kg]
13608
13608
Approach Speed
[KCAS]
Passengers
Cruise Mach
[-]
[-]
150
0,78
150 Wing Span Limit
[m]
0,72
Turnaround
[min]
CSR-01 Polaris
33000
33000
2200
138
36
30
2200
138
36
30
1