3.1 Image and Kernal of a Linear Trans-
formation
Image
Definition.
The image of a function consists of all the
values the function takes in its codomain. If f
is a function from X to Y , then
image(f) = {f (x): x ∈ X}
= {y ∈ Y : y = f (x), for some x ∈ X}
Example. See Figure 1.
Example. The image of
f (x) = ex
consists of all positive numbers.
Example.
b ∈ im(f ), c (cid:54)∈ im(f ) See Figure 2.
Example. f (t) =
(See Figure 3.)
(cid:34)
(cid:35)
cos(t)
sin(t)
1
If the function from X to Y is in-
Example.
vertible, then image(f ) = Y . For each y in Y ,
there is one (and only one) x in X such that
y = f (x), namely, x = f −1(y).
Example. Consider the linear transformation
T from R3 to R3 that projects a vector or-
thogonally into the x1 − x2-plane, as illustrate
in Figure 4. The image of T is the x1−x2-plane
in R3.
Example. Describe the image of the linear
transformation T from R2 to R2 given by the
matrix
(cid:34)
(cid:35)
1 3
2 6
A =
Solution
(cid:34)
(cid:35)
(cid:34)
(cid:35)
(cid:34)
(cid:35) (cid:34)
(cid:35)
T
= A
=
x1
x2
1 3
2 6
x1
x2
x1
x2
2
(cid:34)
(cid:35)
(cid:34)
(cid:35)
(cid:34)
(cid:35)
(cid:34)
(cid:35)
= x1
+ x2
= x1
+ 3×2
1
2
1
2
1
2
3
6
(cid:35)
(cid:34)
1
2
= (x1 + 3×2)
See Figure 5.
Example. Describe the image of the linear
transformation T from R2 to R3 given by the
matrix
A =
1 1
1 2
1 3
Solution
(cid:34)
(cid:35)
T
x1
x2
=
(cid:34)
(cid:35)
x1
x2
1 1
1 2
1 3
= x1
+ x2
1
1
1
1
2
3
See Figure 6.
Definition. Consider the vectors (cid:126)v1, (cid:126)v2, . . . ,
(cid:126)vn in Rm. The set of all linear combinations of
the vectors (cid:126)v1, (cid:126)v2, . . . , (cid:126)vn is called their span:
span((cid:126)v1, (cid:126)v2, . . . , (cid:126)vn)
={c1(cid:126)v1 + c2(cid:126)v2 + . . . + cn(cid:126)vn: ci arbitrary scalars}
Fact The image of a linear transformation
T ((cid:126)x) = A(cid:126)x
is the span of the columns of A. We denote
the image of T by im(T ) or im(A).
Justification
T ((cid:126)x) = A(cid:126)x =
|
|
(cid:126)v1 . . . (cid:126)vn
|
|
x1
x2
…
xn
= x1 (cid:126)v1 + x2 (cid:126)v2 + . . . + xn (cid:126)vn.
3
Fact: Properties of the image
(a). The zero vector is contained in im(T ),
i.e. (cid:126)0 ∈ im(T ).
(b). The image is closed under addition:
If (cid:126)v1, (cid:126)v2 ∈ im(T ), then (cid:126)v1 + (cid:126)v2 ∈ im(T ).
(c). The image is closed under scalar multipli-
cation: If (cid:126)v ∈ im(T ), then k(cid:126)v ∈ im(T ).
Verification
(a). (cid:126)0 ∈ Rm since A(cid:126)0 = (cid:126)0.
(b). Since (cid:126)v1 and (cid:126)v2 ∈ im(T ), ∃ (cid:126)w1 and (cid:126)w2 st.
T ( (cid:126)w1) = (cid:126)v1 and T ( (cid:126)w2) = (cid:126)v2. Then, (cid:126)v1 + (cid:126)v2 =
T ( (cid:126)w1) + T ( (cid:126)w2) = T ( (cid:126)w1 + (cid:126)w2), so that (cid:126)v1 + (cid:126)v2
is in the image as well.
(c). ∃ (cid:126)w st. T ( (cid:126)w) = (cid:126)v. Then k(cid:126)v = kT ( (cid:126)w) =
T (k (cid:126)w), so k(cid:126)v is in the image.
4
Example. Consider an n × n matrix A. Show
that im(A2) is contained in im(A).
Hint: To show (cid:126)w is also in im(A), we need to
find some vector (cid:126)u st. (cid:126)w = A(cid:126)u.
Solution
Consider a vector (cid:126)w in im(A2). There exists
a vector (cid:126)v st. (cid:126)w = A2(cid:126)v = AA(cid:126)v = A(cid:126)u where
(cid:126)u = A(cid:126)v.
5
Definition. Kernel
The kernel of a linear transformation T ((cid:126)x) =
A(cid:126)x is the set of all zeros of the transformation
(i.e., the solutions of the equation A(cid:126)x = (cid:126)0. See
Figure 9.
We denote the kernel of T by ker(T ) or ker(A).
For a linear transformation T from Rn to Rm,
• im(T ) is a subset of the codomain Rm of
T , and
• ker(T ) is a subset of the domain Rn of T .
6
Example. Consider the orthogonal project onto
the x1 − x2−plane, a linear transformation T
from R3 to R3. See Figure 10.
The kernel of T consists of all vectors whose
orthogonal projection is (cid:126)0. These are the vec-
tors on the x3−axis (the scalar multiples of (cid:126)e3).
7