Strong and Weak Emergence
David J. Chalmers
Philosophy Program
Research School of Social Sciences
Australian National University
1 Two concepts of emergence
The term ‘emergence’ often causes confusion in science and philosophy, as it is used
to express at least two quite different concepts. We can label these concepts strong
emergence and weak emergence. Both of these concepts are important, but it is vital to
keep them separate.
We can say that a high-level phenomenon is strongly emergent with respect to a
low-level domain when the high-level phenomenon arises from the low-level domain, but
truths concerning that phenomenon are not deducible even in principle from truths in the
low-level domain.1 Strong emergence is the notion of emergence that is most common in
philosophical discussions of emergence, and is the notion invoked by the British emergentists
of the 1920s.
We can say that a high-level phenomenon is weakly emergent with respect to a low-level
domain when the high-level phenomenon arises from the low-level domain, but truths
concerning that phenomenon are unexpected given the principles governing the low-level
domain. Weak emergence is the notion of emergence that is most common in recent scientific
In (P. Clayton and P. Davies, eds.) The Re-emergence of Emergence (Oxford University Press, 2006). Most of
this chapter was written for discussion at a Granada workshop on emergence, sponsored by the Templeton
Foundation. One section (the last) is modified from a posting to the Usenet newsgroup comp.ai.philosophy,
written in February 1990. I thank the editors and the participants in the Granada workshop on emergence for
their feedback.
1 In philosophers’ terms, we can say that strong emergence requires that high-level truths are not conceptually or
metaphysically necessitated by low-level truths. Other notions in the main text can also be formulated in these
modal terms, but I will mainly talk of deducibility to avoid technicality. The distinction between conceptual
discussions of emergence, and is the notion that is typically invoked by proponents of
emergence in complex systems theory. (See Bedau 1997 for a nice discussion of the notion of
weak emergence and its relation to strong emergence.)
These definitions of strong and weak emergence are first approximations which might
later be refined. But they are enough to exhibit the key differences between the two notions.
As just defined, cases of strong emergence will likely also be cases of weak emergence
(although this depends on just how ‘unexpected’ is understood). But cases of weak emergence
need not be cases of strong emergence. It often happens that a high-level phenomenon is
unexpected given principles of a low-level domain, but is nevertheless deducible in principle
from truths concerning that domain.
The emergence of high-level patterns in cellular automata—a paradigm of emergence in
recent complex systems theory—provides a clear example. If one is given only the basic rules
governing a cellular automaton, then the formation of complex high-level patterns (such as
gliders) may well be unexpected, so these patterns are weakly emergent. But the formation of
these patterns is straightforwardly deducible from the rules (and initial conditions), so these
patterns are not strongly emergent. Of course, to deduce the facts about the patterns in this
case may require a fair amount of calculation, which is why their formation was not obvious
to start with. Nevertheless, upon examination these high-level facts are a straightforward
consequence of low-level facts. So this is a clear case of weak emergence without strong
emergence.
Strong emergence has much more radical consequences than weak emergence. If there are
phenomena that are strongly emergent with respect to the domain of physics, then our
conception of nature needs to be expanded to accommodate them. That is, if there are
phenomena whose existence is not deducible from the facts about the exact distribution of
particles and fields throughout space and time (along with the laws of physics), then this
suggests that new fundamental laws of nature are needed to explain these phenomena.
The existence of phenomena that are merely weakly emergent with respect to the domain
of physics does not have such radical consequences. The existence of unexpected phenomena
and metaphysical necessity will not be central here, but in principle one could formulate finer-grained notions of
strong emergence that take this distinction into account.
in complex biological systems, for example, does not on its own threaten the completeness of
the catalogue of fundamental laws found in physics. As long as the existence of these
phenomena is deducible in principle from a physical specification of the world (as in the case
of the cellular automaton), then no new fundamental laws or properties are needed: everything
will still be a consequence of physics. So if we want to use emergence to draw conclusions
about the structure of nature at the most fundamental level, it is not weak emergence but
strong emergence that is relevant.
Of course, weak emergence may still have important consequences for our understanding
of nature. Even if weakly emergent phenomena do not require the introduction of new
fundamental laws, they may still require in many cases the introduction of further levels of
explanation above the physical level in order to make these phenomena maximally
comprehensible to us. Further, by showing how a simple starting point can have unexpected
consequences, the existence of weakly emergent phenomena can be seen as showing that an
ultimately physicalist picture of the world need not be overly reductionist, but rather can
accommodate all sorts of unexpected richness at higher levels, as long as explanations are
given at the appropriate level.
In a way, the philosophical morals of strong emergence and weak emergence are
diametrically opposed. Strong emergence, if it exists, can be used to reject the physicalist
picture of the world as fundamentally incomplete. By contrast, weak emergence can be used
to support the physicalist picture of the world, by showing how all sorts of phenomena that
might seem novel and irreducible at first sight can nevertheless be grounded in underlying
In what follows, I will say a little more about both strong and weak emergence.
simple laws.
2
Strong emergence
We have seen that strong emergence, if it exists, has radical consequences. The question
that immediately arises, then, is: are there strongly emergent phenomena?
My own view is that the answer to this question is yes. I think there is exactly one clear
case of a strongly emergent phenomenon, and that is the phenomenon of consciousness. We
can say that a system is conscious when there is something it is like to be that system; that is,
when there is something it feels like from the system’s own perspective. It is a key fact about
nature that it contains conscious systems; I am one such. And there is reason to believe that
the facts about consciousness are not deducible from any number of physical facts.
I have argued this position at length elsewhere (Chalmers 1996; 2002) and will not repeat
the case here. But I will mention two well-known avenues of support. First, it seems that a
colourblind scientist given complete physical knowledge about brains could nevertheless not
deduce what it is like to have a conscious experience of red. Secondly, it seems logically
coherent in principle that there could be a world physically identical to this one, but lacking
consciousness entirely, or containing conscious experiences different from our own. If these
claims are correct, it appears to follow that facts about consciousness are not deducible from
physical facts alone.
If this is so, then what follows? I think that even if consciousness is not deducible from
physical facts, states of consciousness are still systematically correlated with physical states.
In particular, it remains plausible that in the actual world, the state of a person’s brain
determines his or her state of consciousness, in the sense that duplicating the brain state will
cause the conscious state to be duplicated too. That is, consciousness still supervenes on the
physical domain. But importantly, this supervenience holds only with the strength of laws of
nature (in the philosophical jargon, it is natural or nomological supervenience). In our world, it
seems to be a matter of law that duplicating physical states will duplicate consciousness; but
in other worlds with different laws, a system physically identical to me might have no
consciousness at all. This suggests that the lawful connection between physical processes and
consciousness is not itself derivable from the laws of physics but is instead a further basic
law or laws of its own. The laws that express the connection between physical processes and
consciousness are what we might call fundamental psychophysical laws.
I think this account provides a good general model for strong emergence. We can think of
strongly emergent phenomena as being systematically determined by low-level facts without
being deducible from those facts. In philosophical language, they are naturally but not
logically supervenient on low-level facts. In any case like this, fundamental physical laws
need to be supplemented with further fundamental laws to ground the connection between
low-level properties and high-level properties. Something like this seems to be what the
British emergentist C. D. Broad had in mind, when he invoked the need for ‘trans-ordinal
laws’ connecting different levels of nature.
Are there other cases of strong emergence, besides consciousness? I think that there are
no other clear cases, and that there are fairly good reasons to think that there are no other
cases. Elsewhere (Chalmers 1996; Chalmers and Jackson 2001) I have argued that given a
complete catalogue of physical facts about the world, supplemented by a complete catalogue
of facts about consciousness, a Laplacean super-being could, in principle, deduce all the
high-level facts about the world, including the high-level facts about chemistry, biology,
economics, and so on. If this is right, then phenomena in these domains may be weakly
emergent from the physical, but they are not strongly emergent (or if they are strongly
emergent, this strong emergence will derive wholly from a dependence on the strongly
emergent phenomena of consciousness). In short, with the exception of consciousness, it
appears that all other phenomena are weakly emergent or are derived from the strongly
emergent phenomenon of consciousness.
One might wonder about cases in which high-level laws, say in chemistry, are not
obviously derivable from the low-level laws of physics. How can I know now that this is not
the case? Here, one can reply by saying that even if the high-level laws are not deducible from
the low-level laws, it remains plausible that they are deducible (or nearly so) from the
low-level facts. For example, if one knows the complete distribution of atoms in space and
time, it is plausible that one can deduce from there the complete distribution of chemical
molecules, whether or not the laws governing molecules are immediately deducible from the
laws governing atoms. So any emergence here is weaker than the sort of emergence that I
maintain is present in the case of consciousness.
Still, this suggests the possibility of an intermediate but still radical sort of emergence, in
which high-level facts and laws are not deducible from low-level laws (combined with initial
conditions). If this intermediate sort of emergence exists, then if our Laplacean super-being is
armed only with low-level laws and initial conditions (as opposed to all the low-level facts
throughout space and time), it will be unable to deduce the facts about some high-level
phenomena. This will presumably go along with a failure to be able to deduce even all the
low-level facts from low-level laws plus initial conditions (since if the low-level facts were
derivable, the demon could deduce the high-level facts from there). So this sort of emergence
entails a sort of incompleteness of physical laws even in characterizing the systematic
evolution of low-level processes.
The best way of thinking of this sort of possibility is as involving a sort of downward
causation. Downward causation means that higher-level phenomena are not only irreducible
but also exert a causal efficacy of some sort. Such causation requires the formulation of basic
principles which state that when certain high-level configurations occur, certain consequences
will follow. (These are what McLaughlin (1993) calls configurational laws.) These
consequences will themselves either be cast in low-level terms, or will be cast in high-level
terms that put strong constraints on low-level facts. Either way, it follows that low-level laws
will be incomplete as a guide to both the low-level and the high-level evolution of processes in
the world.2
To be clear, one should distinguish strong downward causation from weak downward
causation. With strong downward causation, the causal impact of a high-level phenomenon on
low-level processes is not deducible even in principle from initial conditions and low-level
laws. With weak downward causation, the causal impact of the high-level phenomenon is
deducible in principle, but is nevertheless unexpected. As with strong and weak emergence,
both strong and weak downward causation are interesting in their own right. But strong
downward causation would have more radical consequences for our understanding of nature,
so I will focus on it here.
I do not think there is anything incoherent about the idea of strong downward causation.
I do not know whether there are any examples of it in the actual world, however. While it is
certainly true that we can’t currently deduce all high-level facts and laws from low-level laws
plus initial conditions, I do not know of any compelling evidence for high-level facts and laws
(outside the case of consciousness) that are not deducible in principle. But I think it is
possible that we will encounter some. (See Kim (1992; 1999) for some doubts.)
2 In such a case, one might respond by trying to introduce new, highly complex, low-level laws to govern
evolution in these special configurations, in the effort to make low-level laws complete once again. But the
point of this intermediate sort of emergence will still remain. It will just have to be rephrased, perhaps as the
claim that non-configurational low-level laws are an incomplete guide to the evolution of processes. See Meehl
and Sellars (1956) for related ideas here.
Perhaps the most interesting potential case of downward causation is in the domain of
quantum physics, at least on certain ‘collapse’ interpretations of quantum mechanics. On
these interpretations, there are two principles governing the evolution of the quantum wave
function: the linear Schrödinger equation, which governs the standard case, and a nonlinear
measurement postulate, which governs special cases of ‘measurement’. In cases of
measurement, the wave function is held to undergo a sort of ‘quantum jump’ quite unlike the
usual case. A key issue is that no one knows just what is the criterion for a measurement
taking place. Yet it is clear that for the collapse interpretation to work, measurements must
involve certain highly specific causal events, most likely at a high-level. If so, then we can see
the measurement postulate as itself a sort of configurational law, involving downward
causation.
Both consciousness and the quantum measurement case can be seen as strong varieties of
emergence in that they involve in-principle non-deducibility and novel fundamental laws. But
they are quite different in character. If I am right about consciousness, then it is a case of a
strongly emergent quality, while if the relevant interpretations of quantum mechanics are
correct, then it is more like a case of strong downward causation.
In principle, one can have one sort of radical emergence without the other. If one has
strongly emergent qualities without strong downward causation, one has an epiphenomenalist
picture on which there is a new fundamental quality that plays no causal role with respect to
the lower level. If one has strong downward causation without strongly emergent qualities,
one has a picture of the world on which the only fundamental properties are physical, but on
which their evolution is governed in part by high-level configurational laws.
One might also in principle have both strongly emergent qualities and strong downward
causation together. If so, one has a situation in which a new fundamental quality is involved in
new fundamental causal laws. This last option can be illustrated by combining the cases of
consciousness and quantum mechanics discussed above. In the familiar interpretations of
quantum mechanics according to which it is consciousness itself that is responsible for wave-
function collapse, the emergent quality of consciousness is not epiphenomenal but plays a
crucial causal role.
My own view is that, relative to the physical domain, there is just one sort of strongly
emergent quality, namely, consciousness. I do not know whether there is any strong
downward causation, but it seems to me that if there is any strong downward causation,
quantum mechanics is the most likely locus for it. If both strongly emergent qualities and
strong downward causation exist, it is natural to look at the possibility of a close connection
between them, perhaps along the lines mentioned in the last paragraph. The question remains
wide open, however, as to whether or not strong downward causation exists.
3 Weak emergence
Weak emergence does not yield the same sort of radical metaphysical expansion in our
conception of the world as strong emergence, but it is no less interesting. I think that
understanding weak emergence is vital for understanding all sorts of phenomena in nature, and
in particular for understanding biological, cognitive, and social phenomena, as is demonstrated
in many of the other chapters in this volume.
I gave a quick definition of weak emergence earlier. But it is more satisfactory to
understand the notion by example, and then attempt to analyze it. The concept of emergence
is often tacitly invoked by theorists in cognitive science and in the theory of complex
systems, in such a way that it is clear that a notion of other than the notion of strong
emergence is intended. We can take it that something like weak emergence is at play here, and
we can then use the examples to make sense of just what weak emergence comes to.